भारत में आपदा प्रबंधन और पूर्व चेतावनी प्रणालियों में प्रौद्योगिकी, कृत्रिम बुद्धिमत्ता (एआई) और मशीन लर्निंग (एमएल) का उपयोग”

Date:

Share post:

 भारत एक ऐसा देश है जहाँ हर साल विभिन्न प्रकार की आपदाएँ (भूकंप, बाढ़, चक्रवात, सूखा, भूस्खलन, आदि) आती हैं। पारंपरिक आपदा प्रबंधन प्रणाली “प्रतिक्रियाशील” थी – अर्थात घटना के बाद राहत प्रदान करना। अब, भारत एक “सक्रिय, पूर्वानुमानित और प्रौद्योगिकी-संचालित” मॉडल की ओर बढ़ रहा है। एआई और एमएल इन दोनों दृष्टिकोणों को बदल रहे हैं। भारत भौगोलिक रूप से विविध है और अक्सर बाढ़, चक्रवात, भूकंप, सूखा, भूस्खलन और जंगल की आग जैसी विभिन्न प्राकृतिक आपदाओं का सामना करता है। ये आपदाएँ हर साल हजारों लोगों की जान लेती हैं और अरबों रुपये का आर्थिक नुकसान पहुँचाती हैं। पारंपरिक आपदा प्रबंधन प्रणाली मुख्य रूप से प्रतिक्रियात्मक रही है – अर्थात आपदा के बाद राहत और पुनर्वास पर केंद्रित। वर्तमान में, जलवायु परिवर्तन और तेजी से शहरीकरण के कारण आपदाओं की आवृत्ति और तीव्रता दोनों में वृद्धि हुई है। इस संदर्भ में, प्रौद्योगिकी, कृत्रिम बुद्धिमत्ता और मशीन लर्निंग जैसी उन्नत तकनीकों का उपयोग आपदा प्रबंधन में क्रांतिकारी बदलाव लाने वाला साबित हो रहा है। इन तकनीकों ने अब न केवल आपदाओं की पूर्व चेतावनी देना संभव बना दिया है, बल्कि अधिक प्रभावी जोखिम मूल्यांकन, राहत कार्यों का समन्वय और वास्तविक समय पर निर्णय लेने में भी मदद की है। भारत सरकार, एनडीएमए (राष्ट्रीय आपदा प्रबंधन प्राधिकरण), इसरो, आईएमडी और विभिन्न आईआईटी मिलकर एआई-संचालित पूर्वानुमान मॉडल पर काम कर रहे हैं जो भविष्य की आपदाओं का पूर्वानुमान लगा सकते हैं और समय रहते जान-माल की हानि और आर्थिक क्षति को कम कर सकते हैं। इस प्रकार, प्रौद्योगिकी-आधारित आपदा प्रबंधन प्रणालियाँ भारत को “राहत से लचीलेपन की ओर” की ओर ले जा रही हैं—जहाँ उद्देश्य केवल राहत प्रदान करना नहीं है, बल्कि समाज को आपदा-रोधी और सशक्त बनाना है। आपदा पूर्व चेतावनी, जोखिम मूल्यांकन, राहत और पुनर्वास सहायता, नीति नियोजन में इनका उपयोग तेज़ी से बढ़ रहा है। आपदा प्रबंधन में एआई/एमएल का उपयोग कैसे किया जाता है: पूर्व चेतावनी प्रणालियाँ: एमएल मॉडल बाढ़, चक्रवात या सूखे की भविष्यवाणी करने के लिए उपग्रह डेटा, मौसम डेटा, नदी के स्तर और वर्षा पैटर्न का विश्लेषण करते हैं। उपग्रह और सुदूर संवेदन: इसरो के कार्टोसैट और रीसैट उपग्रहों से प्राप्त तस्वीरों का विश्लेषण एआई का उपयोग करके संवेदनशील क्षेत्रों की पहचान करने के लिए किया जाता है। वास्तविक समय की निगरानी: IoT सेंसर, ड्रोन और यूएवी के डेटा का उपयोग एमएल मॉडल के माध्यम से संभावित खतरों के बारे में वास्तविक समय में अलर्ट उत्पन्न करने के लिए किया जाता है। राहत प्रतिक्रिया: एआई-संचालित ड्रोन, रोबोट और जीआईएस-आधारित ट्रैकिंग सिस्टम राहत वितरण और खोज-और-बचाव कार्यों में सहायता करते हैं। जोखिम मानचित्रण: संवेदनशील क्षेत्रों के भेद्यता मानचित्र बनाने के लिए मशीन लर्निंग का उपयोग किया जाता है। संचार और जागरूकता: चैटबॉट, एआई-सक्षम हेल्पलाइन और बहुभाषी चेतावनी संदेश लोगों तक जल्दी पहुँचते हैं। प्रमुख भारतीय पहल: आईएमडी – भारतीय मौसम विभाग: नाउकास्टिंग प्रणाली जैसे एआई-आधारित मॉडल के माध्यम से भारी वर्षा और बिजली की चेतावनी प्रदान करता है एनडीएमए – राष्ट्रीय आपदा प्रबंधन प्राधिकरण: “कॉमन अलर्टिंग प्रोटोकॉल (सीएपी)” के तहत एक बहु-खतरा प्रारंभिक चेतावनी प्रणाली लागू कर रहा है। आईएनसीओआईएस (हैदराबाद): सुनामी प्रारंभिक चेतावनी केंद्र में डीप लर्निंग-आधारित समुद्र स्तर डेटा विश्लेषण के माध्यम से प्रारंभिक चेतावनी प्रदान करता है। मेघदत्त और दामिनी ऐप्स: आईएमडी और आईआईटीएम द्वारा विकसित मोबाइल ऐप जो मौसम और बिजली की चेतावनी प्रदान करते हैं। प्रमुख केस स्टडीज: चक्रवात यास और अम्फान (2020-21): एआई-आधारित सिमुलेशन ने चक्रवात के मार्ग और तीव्रता का अनुमान लगाया। तटीय क्षेत्रों में 90% सटीकता के साथ प्रारंभिक अलर्ट भेजे गए। केरल बाढ़ (2018 और 2022): इसरो और गूगल एआई ने उपग्रह चित्रों का उपयोग करके बाढ़-जोखिम वाले क्षेत्रों का वास्तविक समय मानचित्रण प्रदान करने के लिए सहयोग किया। लाभ: पूर्व चेतावनी की सटीकता में वृद्धि, मानवीय और आर्थिक नुकसान में कमी, डेटा-संचालित शासन, त्वरित राहत वितरण और समन्वय, और वास्तविक समय निर्णय सहायता प्रणाली। चुनौतियाँ: डेटा की कमी या डेटा साझा करने में बाधाएँ, विभिन्न विभागों के बीच समन्वय का अभाव, स्थानीय स्तर पर तकनीकी प्रशिक्षण का अभाव, लागत और बुनियादी ढाँचे की सीमाएँ, गोपनीयता और साइबर सुरक्षा के मुद्दे, “अंतिम-मील कनेक्टिविटी”—अर्थात, ग्रामीण या पहाड़ी क्षेत्रों में चेतावनियाँ प्रेषित करना कठिन है।

आगे की राह: राष्ट्रीय स्तर पर एक एआई-एकीकृत आपदा प्रबंधन ढाँचा विकसित करना, एनडीएमए और इसरो के डेटा को खुली पहुँच प्रदान करना, समुदाय-आधारित एआई प्रणालियाँ विकसित करना जो बेहतर पूर्वानुमानों के लिए स्थानीय इनपुट का लाभ उठाएँ, भारतीय भौगोलिक और सामाजिक परिस्थितियों के अनुरूप एआई मॉडल प्रशिक्षित करना, और सार्वजनिक-निजी भागीदारी (पीपीपी) के माध्यम से प्रौद्योगिकी निवेश बढ़ाना।

निष्कर्ष: आर्टिफिशियल इंटेलिजेंस और मशीन लर्निंग ने आपदा प्रबंधन में क्रांति ला दी है। ये तकनीकें अब केवल आपदा के बाद राहत प्रदान करने तक ही सीमित नहीं हैं, बल्कि संभावित आपदाओं का सटीक पूर्वानुमान लगाने, जोखिमों का आकलन करने और समय पर चेतावनी देने में भी महत्वपूर्ण भूमिका निभा रही हैं। भारत अब पारंपरिक “राहत-केंद्रित” दृष्टिकोण से आगे बढ़कर “लचीलापन-निर्माण” मॉडल की ओर बढ़ रहा है—जिसका उद्देश्य केवल नुकसान को कम करना नहीं, बल्कि समुदायों को आपदाओं के प्रति अधिक लचीला बनाना है। इस परिवर्तन की सफलता इस बात पर निर्भर करेगी कि तकनीक, शासन और समाज किस हद तक एक साथ काम करते हैं। यदि इन तीनों के बीच समन्वय और सहयोग मजबूत होता है, तो भारत न केवल आपदा प्रबंधन में आत्मनिर्भर बनेगा, बल्कि वैश्विक स्तर पर लचीलेपन और तैयारी के एक आदर्श के रूप में भी उभरेगा।

LEAVE A REPLY

Please enter your comment!
Please enter your name here

spot_img

Related articles

48 हजार घर, 14 साल का इंतज़ार: जेएनएनयूआरएम फ्लैट घोटाले पर केंद्र सख्त, AAP सरकार की भूमिका की होगी जांच

केंद्र सरकार ने राजधानी दिल्ली में गरीबों के लिए बनाए गए हजारों मकानों के वर्षों तक खाली पड़े...

अब सड़कों नहीं, आसमान में चलेगी टैक्सी: दिल्ली-NCR में मिनटों में सफर का ‘एयर टैक्सी’ सपना हुआ साकार होने के करीब

दिल्ली-एनसीआर। ट्रैफिक जाम, घंटों की यात्रा और रोज़मर्रा की थकान से जूझ रहे दिल्ली-एनसीआर के लोगों के लिए...

Nayab Singh Saini Tightens the Social Justice Net in Haryana, Doubles Incentives for Model Panchayats and Sets 60-Day Deadline for SC–ST Charge Sheets

Haryana Chief Minister Nayab Singh Saini on Monday unveiled a sharper, time-bound governance framework aimed at strengthening social...

Alleged Misuse of Railway Land Near Rigo Bridge Sparks Controversy in Amritsar, BJP Leader Seeks High-Level Probe

Amritsar: The construction of a large private building on railway land near the busy Rigo Bridge in Amritsar...